Что называется числовой последовательностью. Определение числовой последовательности

Функция a n =f (n) натурального аргумента n (n=1; 2; 3; 4;...) называется числовой последовательностью.

Числа a 1 ; a 2 ; a 3 ; a 4 ;…, образующие последовательность, называются членами числовой последовательности. Так a 1 =f (1); a 2 =f (2); a 3 =f (3); a 4 =f (4);…

Итак, члены последовательности обозначаются буквами с указанием индексов — порядковых номеров их членов: a 1 ; a 2 ; a 3 ; a 4 ;…, следовательно, a 1 — первый член последовательности;

a 2 - второй член последовательности;

a 3 - третий член последовательности;

a 4 - четвертый член последовательности и т.д.

Кратко числовую последовательность записывают так: a n =f (n) или {a n }.

Существуют следующие способы задания числовой последовательности:

1) Словесный способ. Представляет собой закономерность или правило расположения членов последовательности, описанный словами.

Пример 1 . Написать последовательность всех неотрицательных чисел, кратных числу 5.

Решение. Так как на 5 делятся все числа, оканчивающиеся на 0 или на 5, то последовательность запишется так:

0; 5; 10; 15; 20; 25; ...

Пример 2. Дана последовательность: 1; 4; 9; 16; 25; 36; ... . Задайте ее словесным способом.

Решение. Замечаем, что 1=1 2 ; 4=2 2 ; 9=3 2 ; 16=4 2 ; 25=5 2 ; 36=6 2 ; … Делаем вывод: дана последовательность, состоящая из квадратов чисел натурального ряда.

2) Аналитический способ. Последовательность задается формулой n-го члена: a n =f (n). По этой формуле можно найти любой член последовательности.

Пример 3. Известно выражение k-го члена числовой последовательности: a k = 3+2·(k+1). Вычислите первые четыре члена этой последовательности.

a 1 =3+2∙(1+1)=3+4=7;

a 2 =3+2∙(2+1)=3+6=9;

a 3 =3+2∙(3+1)=3+8=11;

a 4 =3+2∙(4+1)=3+10=13.

Пример 4. Определите правило составления числовой последовательности по нескольким ее первым членам и выразите более простой формулой общий член последовательности: 1; 3; 5; 7; 9; ... .

Решение. Замечаем, что дана последовательность нечетных чисел. Любое нечетное число можно записать в виде: 2k-1, где k — натуральное число, т.е. k=1; 2; 3; 4; ... . Ответ: a k =2k-1.

3) Рекуррентный способ. Последовательность также задается формулой, но не формулой общего члена, зависящей только от номера члена. Задается формула, по которой каждый следующий член находят через предыдущие члены. В случае рекуррентного способа задания функции всегда дополнительно задается один или несколько первых членов последовательности.

Пример 5. Выписать первые четыре члена последовательности {a n },

если a 1 =7; a n+1 = 5+a n .

a 2 =5+a 1 =5+7=12;

a 3 =5+a 2 =5+12=17;

a 4 =5+a 3 =5+17=22. Ответ: 7; 12; 17; 22; ... .

Пример 6. Выписать первые пять членов последовательности {b n },

если b 1 = -2, b 2 = 3; b n+2 = 2b n +b n+1 .

b 3 = 2∙b 1 + b 2 = 2∙(-2) + 3 = -4+3=-1;

b 4 = 2∙b 2 + b 3 = 2∙3 +(-1) = 6 -1 = 5;

b 5 = 2∙b 3 + b 4 = 2∙(-1) + 5 = -2 +5 = 3. Ответ: -2; 3; -1; 5; 3; ... .

4) Графический способ. Числовая последовательность задается графиком, который представляет собой изолированные точки. Абсциссы этих точек — натуральные числа: n=1; 2; 3; 4; ... . Ординаты — значения членов последовательности: a 1 ; a 2 ; a 3 ; a 4 ;… .

Пример 7. Запишите все пять членов числовой последовательности, заданной графическим способом.

Каждая точки в этой координатной плоскости имеет координаты (n; a n). Выпишем координаты отмеченных точек по возрастанию абсциссы n .

Получаем: (1 ; -3), (2 ; 1), (3 ; 4), (4 ; 6), (5 ; 7).

Следовательно, a 1 = -3; a 2 =1; a 3 =4; a 4 =6; a 5 =7.

Ответ: -3; 1; 4; 6; 7.

Рассмотренная числовая последовательность в качестве функции (в примере 7) задана на множестве первых пяти натуральных чисел (n=1; 2; 3; 4; 5), поэтому, является конечной числовой последовательностью (состоит из пяти членов).

Если числовая последовательность в качестве функции будет задана на всем множестве натуральных чисел, то такая последовательность будет бесконечной числовой последовательностью.

Числовую последовательность называют возрастающей , если ее члены возрастают (a n+1 >a n) и убывающей, если ее члены убывают (a n+1

Возрастающая или убывающая числовые последовательности называются монотонными .

Числовая последовательность и ее предел представляют собой одну из важнейших проблем математики на протяжении всей истории существования этой науки. Постоянно пополняемые знания, формулируемые новые теоремы и доказательства - все это позволяет рассматривать данное понятие с новых позиций и под разным

Числовая последовательность, в соответствии с одним из самых распространенных определений, представляет собой математическую функцию, основанием которой служит множество натуральных чисел, располагающихся согласно той или иной закономерности.

Существует несколько вариантов создания числовых последовательностей.

Во-первых, эта функция может быть задана так называемым «явным» способом, когда имеется определенная формула, при помощи которой каждый ее член может быть определен простой подстановкой порядкового номера в заданную последовательность.

Второй способ получил название «реккурентного». Его суть состоит в том, что задаются несколько первых членов числовой последовательности, а также специальная реккурентная формула, с помощью которой, зная предыдущий член, можно найти последующий.

Наконец, наиболее общим способом задания последовательностей является так называемый когда без особого труда можно не только выявить тот или иной член под определенным порядковым номером, но и, зная несколько последовательных членов, прийти к общей формуле данной функции.

Числовая последовательность может быть убывающей или возрастающей. В первом случае каждый последующей ее член меньше предыдущего, а во втором - наоборот, больше.

Рассматривая данную тему, нельзя не затронуть вопрос про пределы последовательностей. Пределом последовательности называется такое число, когда для любой, в том числе для бесконечно малой величины, существует порядковый номер, после которого уклонение следующих друг за другом членов последовательности от заданной точки в числовом виде становится меньше величины, заданной еще при формировании этой функции.

Понятие предела числовой последовательности активно используется при проведении тех или иных интегральных и дифференциальных счислений.

Математические последовательности обладают целым набором достаточно интересных свойств.

Во-первых, любая числовая последовательность есть пример математической функции, следовательно, те свойства, которые характерны для функций, можно смело применять и для последовательностей. Самым ярким примером таких свойств является положение о возрастающих и убывающих арифметических рядах, которые объединяются одним общим понятием - монотонные последовательности.

Во-вторых, существует достаточно большая группа последовательностей, которые нельзя отнести ни к возрастающим, ни к убывающим, - это периодические последовательности. В математике ими принято считать те функции, в которых существует так называемая длина периода, то есть с определенного момента (n) начинает действовать следующее равенство y n = y n+T , где Т и будет являться той самой длиной периода.

Оганесян Ева

Числовые последовательности. Реферат.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение
«Средняя общеобразовательная школа №31»
города Барнаула

Числовые последовательности

Реферат

Работу выполнила:
Оганесян Ева,
ученица 8 г класса МБОУ «СОШ №31»
Руководитель:
Полева Ирина Александровна,
учитель математики МБОУ «СОШ №31»

Барнаул - 2014

Введение………………………………………………………………………2

Числовые последовательности.……………………………………………...3

Способы задания числовых последовательностей………………………...4

Развитие учения о прогрессиях……………………………………………..5

Свойства числовых последовательностей…………………………………7

Арифметическая прогрессия……………………………..............................9

Геометрическая прогрессия……………………………………………….10

Заключение …………………………………………………………………11

Список литературы…………………………………………………………11

Введение

Цель настоящего реферата – изучение основных понятий, связанных с числовыми последовательностями, их применение на практике.
Задачи:

  1. Изучить исторические аспекты развития учения о прогрессиях;
  2. Рассмотреть способы задания и свойства числовых последовательностей;
  3. Познакомиться с арифметической и геометрической прогрессиями.

В настоящее время числовые последовательности рассматриваются как частные случаи функции. Числовая последовательность есть функция натурального аргумента. Понятие числовой последовательности возникло и развилось задолго до создания учения о функции. Вот примеры бесконечных числовых последовательностей, известных еще в древности:

1, 2, 3, 4, 5, … - последовательность натуральных чисел.

2, 4, 6, 8, 10,… - последовательность чётных чисел.

1, 3, 5, 7, 9,… - последовательность нечётных чисел.

1, 4, 9, 16, 25,… - последовательность квадратов натуральных чисел.

2, 3, 5, 7, 11… - последовательность простых чисел.

1, ½, 1 /3, ¼, 1 /5,… - последовательность чисел обратных натуральным.

Число членов каждого из этих рядов бесконечно; первые пять последовательностей - монотонно возрастающие, последняя - монотонно убывающая. Все перечисленные последовательности, кроме 5-й, являются заданными ввиду того, что для каждой из них известен общий член, т. е. правило получения члена с любым номером. Для последовательности простых чисел общий член неизвестен, однако еще в III в. до н. э. александрийский ученый Эратосфен указал способ (правда, очень громоздкий) получения n-го ее члена. Этот способ был назван «решетом Эратосфена».

Прогрессии - частные виды числовых последовательностей - встречаются в памятниках II тысячелетия до н. э.

Числовые последовательности

Существуют различные определения числовой последовательности.

Числовая последовательность – это последовательность элементов числового пространства (Википедия).

Числовая последовательность – это занумерованное числовое множество.

Функцию вида y = f (x), x называют функцией натурального аргумента или числовой последовательностью и обозначают y = f (n) или

, , , …, Для обозначения последовательности используется запись ().

Будем выписывать в порядке возрастания положительные чётные числа. Первое такое число равно 2, второе – 4, третье – 6, четвёртое – 8 и т.д., таким образом мы получим последовательность: 2; 4; 6; 8; 10 ….

Очевидно, что на пятом месте в этой последовательности будет число 10, на десятом число – 20, на сотом число – 200. вообще для любого натурального числа n можно указать соответствующее ему положительное чётное число; оно равно 2n.

Рассмотрим ещё одну последовательность. Будем выписывать в порядке убывания правильные дроби с числителем, равным 1:

; ; ; ; ; … .

Для любого натурального числа n мы можем указать соответствующую ему дробь; она равна . Так, на шестом месте должна стоять дробь , на тридцатом - , на тысячном – дробь .

Числа, образующие последовательность, называют соответственно первым, вторым, третьим, четвёртым и т.д. членами последовательности. Члены последовательности обычно обозначают буквами с индексами, указывающими порядковый номер члена. Например: , , и т.д. вообще член последовательности с номером n, или, как говорят, n-й член последовательности, обозначают . Саму же последовательность обозначают (). Последовательность может содержать, как бесконечное число членов, так и конечное. В этом случае её называют конечной. Например: последовательность двухзначных чисел.10; 11; 12; 13; …; 98; 99

Способы задания числовых последовательностей

Последовательности можно задавать несколькими способами.

Обычно последовательность целесообразнее задавать формулой ее общего n-го члена , которая позволяет найти любой член последовательности, зная его номер. В этом случае говорят, что последовательность задана аналитически. Например: последовательность положительных чётных членов =2n.

Задача: найти формулу общего члена последовательности (:

6; 20; 56; 144; 352;…

Решение. Запишем каждый член последовательности в следующем виде:

n=1: 6 = 2 3 = 3 =

n=2: 20 = 4 5 = 5 =

n=3: 56 = 8 7 = 7 =

Как видим, члены последовательности представляют собой произведение степени двойки, умноженной на последовательные нечетные числа, причем два возводится в степень, которая равна номеру рассматриваемого элемента. Таким образом, делаем вывод, что

Ответ: формула общего члена:

Другим способом задания последовательности является задание последовательности с помощью рекуррентного соотношения . Формулу, выражающую любой член последовательности, начиная с некоторого через предыдущие (один или несколько), называют рекуррентной (от латинского слова recurro – возвращаться).

В этом случае задается один или несколько первых элементов последовательности, а остальные определяются по некоторому правилу.

Примером рекуррентно заданной последовательности является последовательность чисел Фибоначчи - 1, 1, 2, 3, 5, 8, 13, ... , в которой каждое последующее число, начиная с третьего, является суммой двух предыдущих: 2 = 1 + 1; 3 = 2 + 1 и так далее. Данную последовательность можно задать рекуррентно:

N N, = 1.

Задача: последовательность задана при помощи рекуррентного соотношения + , n N, = 4. Выписать несколько первых членов этой последовательности.

Решение. Найдем третий член заданной последовательности:

+ =

И т.д.

При рекуррентном задании последовательностей, получаются очень громоздкими выкладки, так как, чтобы найти элементы с большими номерами, необходимо найти все предыдущие члены указанной последовательности, например, для нахождения надо найти все предыдущие 499 членов.

Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1 . «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

Так же числовую последовательность можно задать простым перечислением её членов.

Развитие учения о прогрессиях

Слово прогрессия латинского происхождения (progressio), буквально означает «движение вперёд» (как и слово «прогресс») и встречается впервые у римского автора Боэция (V-VIв в.), первоначально под прогрессией понимали всякую числовую последовательность, построенную по закону, позволяющему неограниченно продолжать её в одном направлении, например последовательность натуральных чисел, их квадратов и кубов. В конце средних веков и в начале нового времени этот термин перестаёт быть общеупотребительным. В XVII веке, например, Дж. Грегори употребляет вместо прогрессии термин «ряд», а другой видный английский математик, Дж. Валлис, применяет для бесконечных рядов термин «бесконечные прогрессии».

В настоящее время мы рассматриваем прогрессии как частные случаи числовых последовательностей.

Теоретические сведения связанные с прогрессиями, впервые встречаются в дошедших до нас документах Древней Греции.

В «Псаммите» Архимед впервые сопоставляет арифметическую и геометрическую прогрессии:

1,2,3,4,5,………………..

10, , ………….

Прогрессии рассматривались как бы продолжением пропорций, вот почему эпитеты арифметическая и геометрическая были перенесены от пропорций к прогрессиям.

Такой взгляд на прогрессии сохранился и у многих математиков XVII и даже XVIIIв. Именно так следует объяснить тот факт, что символ встречающийся у Барроу, а затем и у других английских учёных того времени для обозначения непрерывной геометрической пропорции, стал обозначать в английских и французских учебниках XVIII века геометрическую прогрессию. По аналогии так стали обозначать и арифметическую прогрессию.

Одно из доказательств Архимеда, изложенное в его произведении «Квадратура параболы», сводится по существу к суммированию бесконечно убывающей геометрической прогрессии.

Для решения некоторых задач из геометрии и механики Архимед вывел формулу суммы квадратов натуральных чисел, хотя ею пользовались и до него.

1/6n(n+1)(2n+1)

Некоторые формулы, относящиеся к прогрессиям, были известны китайским и индийским учёным. Так, Ариабхатта (Vв.) знал формулы для общего члена, суммы арифметической прогрессии и др., Магавира (IX в.) пользовался формулой: + + + ... + = 1/6n(n+1)(2n+1) и другими более сложными рядами. Однако правило для нахождения суммы членов произвольной арифметической прогрессии впервые встречается в «Книге абака» (1202) Леонардо Пизанского. В «Науке о числах» (1484) Н. Шюке, как и Архимед, сопоставляет арифметическую прогрессию с геометрической и даёт общее правило для суммирования любой бесконечно малой убывающей геометрической прогрессии. Формула для суммирования бесконечно убывающей прогрессии была известна П. Ферма и другим математикам XVII века.

Задачи на арифметические (и геометрические) прогрессии имеются и в древнекитайском тракте «Математика в девяти книгах», в котором нет, однако, указаний на применение какой-либо формулы суммирования.

Первые из дошедших до нас задач на прогрессии связаны с запросами хозяйственной жизни и общественной практики, как, например, распределение продуктов, деление наследства и т.д.

Из одной клинописной таблички можно заключить, что, наблюдая луну от новолуния до полнолуния, вавилоняне пришли к такому выводу: в первые пять дней после новолуния рост освещения лунного диска совершается по закону геометрической прогрессии со знаменателем 2. В другой более поздней табличке речь идёт о суммировании геометрической прогрессии:

1+2+ +…+ . решение и ответ S=512+(512-1), данные в табличке наводят на мысль, что автор пользовался формулой.

Sn= +(-1), однако о том, как он дошёл до нее никому не известно.

Суммированием геометрических прогрессий и составлением соответствующих, не всегда отвечающих практическим нуждам задач занимались многие любители математики на протяжении древних и средних веков.

Свойства числовых последовательностей

Числовая последовательность - частный случай числовой функции, а потому некоторые свойства функций (ограниченность, монотонность) рассматривают и для последовательностей.

Ограниченные последовательности

Последовательность () называется ограниченной сверху , что для любого номера n , M.

Последовательность () называется ограниченной снизу , если существует такое число m , что для любого номера n , m.

Последовательность () называется ограниченной , если она ограниченная сверху и ограниченная снизу, то есть существует такое число M 0 , что для любого номера n , M.

Последовательность () называется неограниченной , если существует такое число M 0 , что существует такой номер n , что, M.

Задача: исследовать последовательность = на ограниченность.

Решение. Заданная последовательность является ограниченной, так как для любого натурального номера n выполняются неравенства:

0 1,

То есть последовательность является ограниченной снизу нулем, и вместе с тем является ограниченной сверху единицей, а значит, является и ограниченной.

Ответ: последовательность ограничена - снизу нулем, а сверху единицей.

Возрастающие и убывающие последовательности

Последовательность () называют возрастающей , если каждый ее член больше предыдущего:

Например, 1, 3, 5, 7.....2n -1,... - возрастающая последовательность.

Последовательность () называют убывающей , если каждый ее член меньше предыдущего:

Например, 1; - убывающая последовательность.

Возрастающие и убывающие последовательности объединяют общим термином - монотонные последовательности . Приведем еще несколько примеров.

1; - эта последовательность не является ни возрастающей, ни убывающей (немонотонная последовательность).

2n. Речь идет о последовательности 2, 4, 8, 16, 32, ... - возрастающая последовательность.

Вообще, если a > 1, то последовательность = возрастает;

если 0 = убывает.

Арифметическая прогрессия

Числовую последовательность, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией , а число d – разностью арифметической прогрессии.

Таким образом, арифметическая прогрессия – это числовая последовательность

X, = = + d, (n = 2, 3, 4, …; a и d – заданные числа).

Пример 1. 1, 3, 5, 7, 9, 11, … – возрастающая арифметическая прогрессия, у которой = 1, d = 2.

Пример 2. 20, 17, 14, 11, 8, 5, 2, –1, –4,… – убывающая арифметическая прогрессия, у которой = 20, d = –3.

Пример 3. Рассмотрим последовательность натуральных чисел, которые при делении на четыре дают в остатке 1: 1; 5; 9; 13; 17; 21 …

Каждый её член, начиная со второго, получается прибавлением к предыдущему члену числа 4. Эта последовательность является примером арифметической прогрессии.

Нетрудно найти явное (формульное) выражение через n. Величина очередного элемента возрастает на d по сравнению с предыдущим, таким образом, величина n элемента возрастет на величину (n – 1)d по сравнению с первым членом арифметической прогрессии, т.е.

= + d (n – 1). Это формула n-го члена арифметической прогрессии.

Это формула суммы n членов арифметической прогрессии.

Арифметической прогрессия названа потому, что в ней каждый член, кроме первого, равен среднему арифметическому двух соседних с ним – предыдущего и последующего, действительно,

Геометрическая прогрессия

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q, называют геометрической прогрессией , а число q – знаменателем геометрической прогрессии. Таким образом, геометрическая прогрессия – это числовая последовательность ( заданная рекуррентно соотношениями

B, = q (n = 2, 3, 4…; b и q – заданные числа).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия

2, q = 3.

Пример 2. 2, –2, 2, –2, … – геометрическая прогрессия = 2, q = –1.

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е. ; ;…-

является геометрической прогрессией, первый член которой равен , а знаменатель – .

Формула n-го члена геометрической прогрессии имеет вид:

Формула суммы n членов геометрической прогрессии:

Характеристическое свойство геометрической прогрессии: числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов,

Заключение

Изучением числовых последовательностей занимались многие ученые на протяжении многих веков. Первые из дошедших до нас задач на прогрессии связаны с запросами хозяйственной жизни и общественной практики, как, например, распределение продуктов, деление наследства и т.д. Они являются одним из ключевых понятий математики. В своей работе я постаралась отразить основные понятия, связанные с числовыми последовательностями, способы их задания, свойства, рассмотрела некоторые из них. Отдельно были рассмотрены прогрессии (арифметическая и геометрическая), рассказано об основных понятиях связанных с ними.

Список литературы

  1. А.Г. Мордкович, Алгебра, 10 класс, учебник, 2012г.
  2. А.Г. Мордкович, Алгебра, 9 класс, учебник, 2012г.
  3. Большой справочник школьника. Москва, «Дрофа», 2001г.
  4. Г.И. Глейзер, «История математики в школе»,

М.: Просвещение, 1964г.

  1. «Математика в школе», журнал, 2002г .
  2. Образовательные онлайн сервисы Webmath.ru
  3. Универсальная научно-популярная онлайн-энциклопедия «Кругосвет»

Введение………………………………………………………………………………3

1.Теоретическая часть……………………………………………………………….4

Основные понятия и термины…………………………………………………....4

1.1 Виды последовательностей…………………………………………………...6

1.1.1.Ограниченные и неограниченные числовые последовательности…..6

1.1.2.Монотонность последовательностей…………………………………6

1.1.3.Бесконечно большие и бесконечно малые последовательности…….7

1.1.4.Свойства бесконечно малых последовательностей…………………8

1.1.5.Сходящиеся и расходящиеся последовательности и их свойства..…9

1.2Предел последовательности………………………………………………….11

1.2.1.Теоремы о пределах последовательностей……………………………15

1.3.Арифметическая прогрессия…………………………………………………17

1.3.1. Свойства арифметической прогрессии…………………………………..17

1.4Геометрическая прогрессия…………………………………………………..19

1.4.1. Свойства геометрической прогрессии…………………………………….19

1.5. Числа Фибоначчи……………………………………………………………..21

1.5.1 Связь чисел Фибоначчи с другими областями знаний…………………….22

1.5.2. Использование ряда чисел Фибоначчи для описания живой и неживой природы…………………………………………………………………………….23

2. Собственные исследования…………………………………………………….28

Заключение……………………………………………………………………….30

Список использованной литературы…………………………………………....31

Введение.

Числовые последовательности это очень интересная и познавательная тема. Эта тема встречается в заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, вступительных экзаменов в Высшие Учебные Заведения и на ЕГЭ. Мне интересно узнать связь математических последовательностей с другими областями знаний.

Цель исследовательской работы: Расширить знания о числовой последовательности.

1. Рассмотреть последовательность;

2. Рассмотреть ее свойства;

3. Рассмотреть аналитическое задание последовательности;

4. Продемонстрировать ее роль в развитии других областей знаний.

5. Продемонстрировать использование ряда чисел Фибоначчи для описания живой и неживой природы.

1. Теоретическая часть.

Основные понятия и термины.

Определение. Числовая последовательность– функция вида y = f(x), x О N, где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f(n) или y1, y2,…, yn,…. Значения y1, y2, y3,… называют соответственно первым, вторым, третьим, … членами последовательности.

Число a называется пределом последовательности x = {x n }, если для произвольного заранее заданного сколь угодно малого положительного числа ε найдется такое натуральное число N, что при всех n>N выполняется неравенство |x n - a| < ε.

Если число a есть предел последовательности x = {x n }, то говорят, что x n стремится к a, и пишут

.

Последовательность {yn} называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y1 < y2 < y3 < … < yn < yn+1 < ….

Последовательность {yn} называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y1 > y2 > y3 > … > yn > yn+1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

Арифметическая прогрессия- это последовательность {an}, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией, а число d – разностью арифметической прогрессии.

Таким образом, арифметическая прогрессия – это числовая последовательность {an}, заданная рекуррентно соотношениями

a1 = a, an = an–1 + d (n = 2, 3, 4, …)

Геометрическая прогрессия- это последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q.

Таким образом, геометрическая прогрессия – это числовая последовательность {bn}, заданная рекуррентно соотношениями

b1 = b, bn = bn–1 q (n = 2, 3, 4…).

1.1 Виды последовательностей.

1.1.1 Ограниченные и неограниченные последовательности.

Последовательность {bn} называют ограниченной сверху, если существует такое число М, что для любого номера n выполняется неравенство bn≤ M;

Последовательность {bn} называют ограниченной снизу, если существует такое число М, что для любого номера n выполняется неравенство bn≥ М;

Например:

1.1.2 Монотонность последовательностей.

Последовательность {bn} называют невозрастающие (неубывающей), если для любого номера n справедливо неравенство bn≥ bn+1 (bn ≤bn+1);

Последовательность {bn} называют убывающей (возрастающей), если для любого номера n справедливо неравенство bn> bn+1 (bn

Убывающие и возрастающие последовательности называют строго монотонными, невозрастающие- монотонными в широком смысле.

Последовательности, ограниченные одновременно сверху и снизу, называются ограниченными.

Последовательность всех этих типов носят общее название- монотонные.

1.1.3 Бесконечно большие и малые последовательности.

Бесконечно малая последовательность- это числовая функция или последовательность, которая стремится к нулю.

Последовательность an называется бесконечно малой, если

Функция называется бесконечно малой в окрестности точки x0, если ℓimx→x0 f(x)=0.

Функция называется бесконечно малой на бесконечности, если ℓimx→.+∞ f(x)=0 либо ℓimx→-∞ f(x)=0

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если ℓimx→.+∞ f(x)=а, то f(x) − a = α(x), ℓimx→.+∞ f((x)-a)=0.

Бесконечно большая последовательность- числовая функция или последовательность, которая стремится к бесконечности.

Последовательность an называется бесконечно большой, если

ℓimn→0 an=∞.

Функция называется бесконечно большой в окрестности точки x0, если ℓimx→x0 f(x)= ∞.

Функция называется бесконечно большой на бесконечности, если

ℓimx→.+∞ f(x)= ∞ либо ℓimx→-∞ f(x)= ∞ .

1.1.4 Свойства бесконечно малых последовательностей.

Сумма двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Разность двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Алгебраическая сумма любого конечного числа бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Любая бесконечно малая последовательность ограничена.

Если стационарная последовательность является бесконечно малой, то все её элементы, начиная с некоторого, равны нулю.

Если вся бесконечно малая последовательность состоит из одинаковых элементов, то эти элементы - нули.

Если {xn} - бесконечно большая последовательность, не содержащая нулевых членов, то существует последовательность {1/xn} , которая является бесконечно малой. Если же всё же {xn} содержит нулевые элементы, то последовательность {1/xn} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно малой.

Если {an} - бесконечно малая последовательность, не содержащая нулевых членов, то существует последовательность {1/an}, которая является бесконечно большой. Если же всё же {an}содержит нулевые элементы, то последовательность {1/an} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно большой.

1.1.5 Сходящиеся и расходящиеся последовательности и их свойства.

Сходящаяся последовательность- это последовательность элементов множества Х, имеющая предел в этом множестве.

Расходящаяся последовательность- это последовательность, не являющаяся сходящейся.

Всякая бесконечно малая последовательность является сходящейся. Её предел равен нулю.

Удаление любого конечного числа элементов из бесконечной последовательности не влияет ни на сходимость, ни на предел этой последовательности.

Любая сходящаяся последовательность ограничена. Однако не любая ограниченная последовательность сходится.

Если последовательность {xn} сходится, но не является бесконечно малой, то, начиная с некоторого номера, определена последовательность {1/xn}, которая является ограниченной.

Сумма сходящихся последовательностей также является сходящейся последовательностью.

Разность сходящихся последовательностей также является сходящейся последовательностью.

Произведение сходящихся последовательностей также является сходящейся последовательностью.

Частное двух сходящихся последовательностей определено, начиная с некоторого элемента, если только вторая последовательность не является бесконечно малой. Если частное двух сходящихся последовательностей определено, то оно представляет собой сходящуюся последовательность.

Если сходящаяся последовательность ограничена снизу, то никакая из её нижних граней не превышает её предела.

Если сходящаяся последовательность ограничена сверху, то её предел не превышает ни одной из её верхних граней.

Если для любого номера члены одной сходящейся последовательности не превышают членов другой сходящейся последовательности, то и предел первой последовательности также не превышает предела второй.

Математика — наука, строящая мир. Как учёный, так и простой человек — никто не сможет обойтись без неё. Сначала маленьких детей учат считать, потом складывать, вычитать, умножать и делить, к средней школе в ход вступают буквенные обозначения, а в старшей без них уже не обойтись.

Но сегодня речь пойдёт о том, на чём строится вся известная математика. О сообществе чисел под названием «пределы последовательностей».

Что такое последовательности и где их предел?

Значение слова «последовательность» трактовать нетрудно. Это такое построение вещей, где кто-то или что-то расположены в определённом порядке или очереди. Например, очередь за билетами в зоопарк — это последовательность. Причём она может быть только одна! Если, к примеру, посмотреть на очередь в магазин — это одна последовательность. А если один человек из этой очереди вдруг уйдёт, то это уже другая очередь, другой порядок.

Слово «предел» также легко трактуется — это конец чего-либо. Однако в математике пределы последовательностей — это такие значения на числовой прямой, к которым стремится последовательность чисел. Почему стремится, а не заканчивается? Всё просто, у числовой прямой нет конца, а большинство последовательностей, как лучи, имеют только начало и выглядят следующим образом:

х 1 , х 2 , х 3 , …х n …

Отсюда определение последовательности — функция натурального аргумента. Более простыми словами — это ряд членов некоторого множества.

Как строится числовая последовательность?

Простейший пример числовой последовательности может выглядеть так: 1, 2, 3, 4, …n…

В большинстве случаев для практических целей последовательности строятся из цифр, причём каждый следующий член ряда, обозначим его Х, имеет своё имя. Например:

х 1 — первый член последовательности;

х 2 — второй член последовательности;

х 3 — третий член;

х n — энный член.

В практических методах последовательность задаётся общей формулой, в которой есть некоторая переменная. Например:

Х n =3n, тогда сам ряд чисел будет выглядеть так:

Стоит не забывать, что при общей записи последовательностей можно использовать любые латинские буквы, а не только Х. Например: y, z, k и т. д.

Арифметическая прогрессия как часть последовательностей

Прежде чем искать пределы последовательностей, целесообразно поглубже окунуться в само понятие подобного числового ряда, с которым все сталкивались, будучи в средних классах. Арифметическая прогрессия — это ряд чисел, в котором разница между соседними членами постоянна.

Задача: «Пусть а 1 =15, а шаг прогрессии числового ряда d=4. Постройте первые 4 члена этого ряда»

Решение: а 1 = 15 (по условию) — первый член прогрессии (числового ряда).

а 2 = 15+4=19 — второй член прогрессии.

а 3 =19+4=23 — третий член.

а 4 =23+4=27 — четвёртый член.

Однако подобным методом трудно добраться до крупных значений, например до а 125. . Специально для таких случаев была выведена удобная для практики формула: а n =a 1 +d(n-1). В данном случае а 125 =15+4(125-1)=511.

Виды последовательностей

Большинство последовательностей бесконечны, это стоит запомнить на всю жизнь. Существует два интересных вида числового ряда. Первый задаётся формулой а n =(-1) n . Математики часто называют эту последовательностей мигалкой. Почему? Проверим её числовой ряд.

1, 1, -1 , 1, -1, 1 и т. д. На подобном примере становится ясно, что числа в последовательностях могут легко повторяться.

Факториальная последовательность. Легко догадаться — в формуле, задающей последовательность, присутствует факториал. Например: а n = (n+1)!

Тогда последовательность будет выглядеть следующим образом:

а 2 = 1х2х3 = 6;

а 3 = 1х2х3х4 =24 и т. д.

Последовательность, заданная арифметической прогрессией, называется бесконечно убывающей, если для всех её членов соблюдается неравенство -1

а 3 = - 1/8 и т. д.

Существует даже последовательность, состоящая из одного и того же числа. Так, а n =6 состоит из бесконечного множества шестёрок.

Определение предела последовательности

Пределы последовательностей давно существуют в математике. Конечно, они заслужили свое собственное грамотное оформление. Итак, время узнать определение пределов последовательностей. Для начала рассмотрим подробно предел для линейной функции:

  1. Все пределы обозначаются сокращённо lim.
  2. Запись предела состоит из сокращения lim, какой-либо переменной, стремящейся к определённому числу, нулю или бесконечности, а также из самой функции.

Легко понять, что определение предела последовательности может быть сформулировано следующим образом: это некоторое число, к которому бесконечно приближаются все члены последовательности. Простой пример: а x = 4x+1. Тогда сама последовательность будет выглядеть следующим образом.

5, 9, 13, 17, 21…x …

Таким образом, данная последовательность будет бесконечно увеличиваться, а, значит, её предел равен бесконечности при x→∞, и записывать это следует так:

Если же взять похожую последовательность, но х будет стремиться к 1, то получим:

А ряд чисел будет таким: 1.4, 1.8, 4.6, 4.944 и т. д. Каждый раз нужно подставлять число всё больше приближеннее к единице (0.1, 0.2, 0.9, 0.986). Из этого ряда видно, что предел функции — это пять.

Из этой части стоит запомнить, что такое предел числовой последовательности, определение и метод решения простых заданий.

Общее обозначение предела последовательностей

Разобрав предел числовой последовательности, определение его и примеры, можно приступить к более сложной теме. Абсолютно все пределы последовательностей можно сформулировать одной формулой, которую обычно разбирают в первом семестре.

Итак, что же обозначает этот набор букв, модулей и знаков неравенств?

∀ — квантор всеобщности, заменяющий фразы «для всех», «для всего» и т. п.

∃ — квантор существования, в данном случае обозначает, что существует некоторое значение N, принадлежащее множеству натуральных чисел.

Длинная вертикальная палочка, следующая за N, значит, что данное множество N «такое, что». На практике она может означать «такая, что», «такие, что» и т. п.

Для закрепления материала прочитайте формулу вслух.

Неопределённость и определённость предела

Метод нахождения предела последовательностей, который рассматривался выше, пусть и прост в применении, но не так рационален на практике. Попробуйте найти предел для вот такой функции:

Если подставлять различные значения «икс» (с каждым разом увеличивающиеся: 10, 100, 1000 и т. д.), то в числителе получим ∞, но в знаменателе тоже ∞. Получается довольно странная дробь:

Но так ли это на самом деле? Вычислить предел числовой последовательности в данном случае кажется достаточно легко. Можно было бы оставить всё, как есть, ведь ответ готов, и получен он на разумных условиях, однако есть ещё один способ специально для таких случаев.

Для начала найдём старшую степень в числителе дроби — это 1, т. к. х можно представить как х 1 .

Теперь найдём старшую степень в знаменателе. Тоже 1.

Разделим и числитель, и знаменатель на переменную в высшей степени. В данном случае дробь делим на х 1 .

Далее найдём, к какому значению стремится каждое слагаемое, содержащее переменную. В данном случае рассматриваются дроби. При х→∞ значение каждой из дробей стремится к нулю. При оформлении работы в писменном виде стоит сделать такие сноски:

Получается следующее выражение:

Конечно же, дроби, содержащие х, не стали нулями! Но их значение настолько мало, что вполне разрешено не учитывать его при расчётах. На самом же деле х никогда не будет равен 0 в данном случае, ведь на ноль делить нельзя.

Что такое окрестность?

Предположим, в распоряжении профессора сложная последовательность, заданная, очевидно, не менее сложной формулой. Профессор нашёл ответ, но подходит ли он? Ведь все люди ошибаются.

Огюст Коши в своё время придумал отличный способ для доказательства пределов последовательностей. Его способ назвали оперированием окрестностями.

Предположим, что существует некоторая точка а, её окрестность в обе стороны на числовой прямой равна ε («эпсилон»). Поскольку последняя переменная — расстояние, то её значение всегда положительно.

Теперь зададим некоторую последовательность х n и положим, что десятый член последовательности (x 10) входит в окрестность а. Как записать этот факт на математическом языке?

Допустим, х 10 находится правее от точки а, тогда расстояние х 10 -а<ε, однако, если расположить «икс десятое» левее точки а, то расстояние получится отрицательным, а это невозможно, значит, следует занести левую часть неравенства под модуль. Получится |х 10 -а|<ε.

Теперь пора разъяснить на практике ту формулу, о которой говорилось выше. Некоторое число а справедливо называть конечной точкой последовательности, если для любого её предела выполняется неравенство ε>0, причём вся окрестность имеет свой натуральный номер N, такой, что всё члены последовательности с более значительными номерами окажутся внутри последовательности |x n - a|< ε.

С такими знаниями легко осуществить решение пределов последовательности, доказать или опровергнуть готовый ответ.

Теоремы

Теоремы о пределах последовательностей — важная составляющая теории, без которой невозможна практика. Есть всего лишь четыре главных теоремы, запомнив которые, можно в разы облегчить ход решения или доказательства:

  1. Единственность предела последовательности. Предел у любой последовательности может быть только один или не быть вовсе. Тот же пример с очередью, у которой может быть только один конец.
  2. Если ряд чисел имеет предел, то последовательность этих чисел ограничена.
  3. Предел суммы (разности, произведения) последовательностей равен сумме (разности, произведению) их пределов.
  4. Предел частного от деления двух последовательностей равен частному пределов тогда и только тогда, когда знаменатель не обращается в ноль.

Доказательство последовательностей

Иногда требуется решить обратную задачу, доказать заданный предел числовой последовательности. Рассмотрим на примере.

Доказать, что предел последовательности, заданной формулой, равен нолю.

По рассмотренному выше правилу, для любой последовательности должно выполняться неравенство |x n - a|<ε. Подставим заданное значение и точку отсчёта. Получим:

Выразим n через «эпсилон», чтобы показать существование некоего номера и доказать наличие предела последовательности.

На этом этапе важно напомнить, что «эпсилон» и «эн» - числа положительные и не равны нулю. Теперь можно продолжать дальнейшие преобразования, используя знания о неравенствах, полученные в средней школе.

Откуда получается, что n > -3 + 1/ε. Поскольку стоит помнить, что речь идёт о натуральных числах, то результат можно округлить, занеся его в квадратные скобки. Таким образом, было доказано, что для любого значения окрестности «эпсилон» точки а=0 нашлось значение такое, что выполняется начальное неравенство. Отсюда можно смело утверждать, что число а есть предел заданной последовательности. Что и требовалось доказать.

Вот таким удобным методом можно доказать предел числовой последовательности, какой бы сложной она на первый взгляд ни была. Главное — не впадать в панику при виде задания.

А может, его нет?

Существование предела последовательности необязательно на практике. Легко можно встретить такие ряды чисел, которые действительно не имеют конца. К примеру, та же «мигалка» x n = (-1) n . очевидно, что последовательность, состоящая всего лишь из двух цифр, циклически повторяющихся, не может иметь предела.

Та же история повторяется с последовательностями, состоящими из одного числа, дробными, имеющими в ходе вычислений неопределённость любого порядка (0/0, ∞/∞, ∞/0 и т. д.). Однако следует помнить, что неверное вычисление тоже имеет место быть. Иногда предел последоватей найти поможет перепроверка собственного решения.

Монотонная последовательность

Выше рассматривались несколько примеров последовательностей, методы их решения, а теперь попробуем взять более определённый случай и назовём его «монотонной последовательностью».

Определение: любую последовательность справедливо называть монотонно возрастающей, если для нее выполняется строгое неравенство x n < x n +1. Также любую последовательность справедливо называть монотонной убывающей, если для неё выполняется неравенство x n > x n +1.

Наряду с этими двумя условиями существуют также подобные нестрогие неравенства. Соответственно, x n ≤ x n +1 (неубывающая последовательность) и x n ≥ x n +1 (невозрастающая последовательность).

Но легче понимать подобное на примерах.

Последовательность, заданная формулой х n = 2+n, образует следующий ряд чисел: 4, 5, 6 и т. д. Это монотонно возрастающая последовательность.

А если взять x n =1/n, то получим ряд: 1/3, ¼, 1/5 и т. д. Это монотонно убывающая последовательность.

Предел сходящейся и ограниченной последовательности

Ограниченная последовательность — последовательность, имеющая предел. Сходящаяся последовательность — ряд чисел, имеющий бесконечно малый предел.

Таким образом, предел ограниченной последовательности — это любое действительное или комплексное число. Помните, что предел может быть только один.

Предел сходящейся последовательности — это величина бесконечно малая (действительная или комплексная). Если начертить диаграмму последовательности, то в определённой точке она будет как бы сходиться, стремиться обратиться в определённую величину. Отсюда и название — сходящаяся последовательность.

Предел монотонной последовательности

Предел у такой последовательности может быть, а может и не быть. Сначала полезно понять, когда он есть, отсюда можно оттолкнуться при доказательстве отсутствия предела.

Среди монотонных последовательностей выделяют сходящуюся и расходящуюся. Сходящаяся — это такая последовательность, которая образована множеством х и имеет в данном множестве действительный или комплексный предел. Расходящаяся — последовательность, не имеющая предела в своём множестве (ни действительного, ни комплексного).

Причём последовательность сходится, если при геометрическом изображении её верхний и нижний пределы сходятся.

Предел сходящейся последовательности во многих случаях может быть равен нулю, так как любая бесконечно малая последовательность имеет известный предел (ноль).

Какую сходящуюся последовательность ни возьми, они все ограничены, однако далеко не все ограниченные последовательности сходятся.

Сумма, разность, произведение двух сходящихся последовательностей - также сходящаяся последовательность. Однако частное может быть также сходящейся, если оно определено!

Различные действия с пределами

Пределы последовательностей — это такая же существенная (в большинстве случаев) величина, как и цифры и числа: 1, 2, 15, 24, 362 и т. д. Получается, что с пределами можно проводить некоторые операции.

Во-первых, как и цифры и числа, пределы любых последовательностей можно складывать и вычитать. Исходя из третьей теоремы о пределах последовательностей, справедливо следующее равенство: предел суммы последовательностей равен сумме их пределов.

Во-вторых, исходя из четвёртой теоремы о пределах последовательностей, справедливо следующее равенство: предел произведения n-ого количества последовательностей равен произведению их пределов. То же справедливо и для деления: предел частного двух последовательностей равен частному их пределов, при условии что предел не равен нулю. Ведь если предел последовательностей будет равен нулю, то получится деление на ноль, что невозможно.

Свойства величин последовательностей

Казалось бы, предел числовой последовательности уже разобран довольно подробно, однако не раз упоминаются такие фразы, как «бесконечно маленькие» и «бесконечно большие» числа. Очевидно, если есть последовательность 1/х, где x→∞, то такая дробь бесконечно малая, а если та же последовательность, но предел стремится к нулю (х→0), то дробь становится бесконечно большой величиной. А у таких величин есть свои особенности. Свойства предела последовательности, имеющей какие угодно малые или большие величины, состоят в следующем:

  1. Сумма любого количества сколько угодно малых величин будет также малой величиной.
  2. Сумма любого количества больших величин будет бесконечно большой величиной.
  3. Произведение сколь угодно малых величин бесконечно мало.
  4. Произведение сколько угодно больших чисел — величина бесконечно большая.
  5. Если исходная последовательность стремится к бесконечно большому числу, то величина, ей обратная, будет бесконечно малой и стремиться к нулю.

На самом деле вычислить предел последовательности - не такая сложная задача, если знать простой алгоритм. Но пределы последовательностей — тема, требующая максимума внимания и усидчивости. Конечно, достаточно просто уловить суть решения подобных выражений. Начиная с малого, со временем можно достигнуть больших вершин.